SWOT INSTITUTE DIFFERENTIAL EQUATIONS XII-TEST

Time : 1 hr .
Determine order and degree (if defined) of differential equations given in Question 1 to 2.

1. $\left(y^{m}\right)^{2}+\left(y^{n}\right)^{3}+\left(y^{\prime}\right)^{4}+y^{5}=0$
2. $y^{m}+2 y^{n}+y^{\prime}=0$

In the given question verify that the given functions (explicit or implicit) is solution of the corresponding differential equation.
3. $y-\cos y=x$.

In the given question, from a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
4. $y^{2}=a\left(b^{2}-x^{2}\right)$
5. Show that the differential equation $x \cos \left(\frac{y}{x}\right) \frac{d y}{d x}=y \cos \left(\frac{y}{x}\right)+x$ is homogenous and solve it.
6. Show that the differential equation $2 y e^{\frac{x}{y}} d x+\left(y-2 x e^{\frac{x}{y}}\right) d y=0$ is homogenous and find its particular solution, given that $\mathrm{x}=0$, when $\mathrm{y}=1$.
In the given question, show that the given differential equation is homogenous and solve it.
7. $x d y-y d x=\sqrt{x^{2}+y^{2}} d x$.
8. Find the particular solution of the differential equation

$$
\frac{d y}{d x}+y \cot x=2 x+x^{2} \cot x(x \neq 0)
$$

given that $\mathrm{y}=0$ when $\mathrm{x}=\frac{\pi}{2}$.
For each of the differential equation given in question, find the general solution :
9. $y d x=\left(x+y^{2}\right) d y=0$

For each of the differential equation given in question, find a particular solution satisfying the given condition :
10. $\frac{d y}{d x}-3 y \cot x=\sin 2 x ; y=2$ when $x=\frac{\pi}{2}$
11. Solve the differential equation

$$
(x d y-y d x) y \sin \left(\frac{y}{x}\right)=(y d x+x d y) x \cos \left(\frac{y}{x}\right)
$$

12. Solve the differential equation

$$
\left(\tan ^{-1} y-x\right) d y=\left(1+y^{2}\right) d x
$$

