SWOT INSTITUTE RELATIONS AND FUNCTIONS XII-TEST

Time : 1 hr .

1. Show that the relation R in \mathbf{R} defined as $R=\left[(a, b): a \leq b^{3}\right)$, is neither reflexive nor transitive and nor symmetric.
2. Let R be the relation in the set $(1,2,3,4)$ given by $R=\{(1,2),(2,2),(1,1),(4,4),(1,3),(3,3)$, $(3,2)\}$. Choose the correct answer.
(A) R is reflexive and symmetric but not transitive.
(B) R is reflexive and transitive but not symmetric.
(C) R is symmetric and transitive but not reflexive.
(D) R is an equivalence relation.
3. Let $S=\{1,2,3\}$. Determine whether the function $f: S \rightarrow S$ defined as below have inverse, Find f^{-1}, if it exists,
(a) $f=\{(1,1),(2,2),(3,3)\}$
(b) $f=\{(1,1),(2,1),(3,1)\}$
(c) $f=\{(1,3),(3,2),(2,1)\}$.
4. Show that $f:[-1,1] \rightarrow R$, given by $f(x)=\frac{x}{(x+2)}$ is one-one. Find the inverse of the function $f:[-1,1] \rightarrow$ Range f.
(Hint : For $y \in$ Range f, $y=f(x)=\frac{x}{(x+2)}$, for some x in $[-1,1]$, i.e., $x=\frac{2 y}{(1-y)}$)
5. Consider $f: R_{+} \rightarrow[-5, \infty)$ given by $f(x)=9 x^{2}+6 x-5$. Show that f is invertible with $f^{-1}(y)=\left(\frac{(\sqrt{y+6})-1}{3}\right)$.
6. For each operation * defined below, determine whether * is binary, commutative or associative.

On Z^{+}, define $a^{*} b=2^{a b}$.
7. Let $\mathrm{A}=\mathrm{N} \times \mathrm{N}$ and * be the binary operation on A defined by

$$
(a, b)^{*}(c, d)=(a+c, b+d)
$$

8. Determine which of the following binary operations on the set R are associative and which are commutative :

$$
\mathrm{a}^{*} \mathrm{~b}=\frac{(\mathrm{a}+\mathrm{b})}{2} \forall \mathrm{a}, \mathrm{~b} \in \mathrm{R} .
$$

