SWOT INSTITUTE RELATIONS AND FUNCTIONS XII-TEST

Time : 1 hr.

- 1. Show that the relation R in **R** defined as $R = [(a, b) : a \le b^3)$, is neither reflexive nor transitive and nor symmetric.
- Let R be the relation in the set (1, 2, 3, 4) given by R = {(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)}. Choose the correct answer.
 - (A) R is reflexive and symmetric but not transitive.
 - (B) R is reflexive and transitive but not symmetric.
 - (C) R is symmetric and transitive but not reflexive.
 - (D) R is an equivalence relation.
- 3. Let S = {1, 2, 3}. Determine whether the function f : S \rightarrow S defined as below have inverse, Find f⁻¹, if it exists,
 - (a) $f = \{(1, 1), (2, 2), (3, 3)\}$
 - (b) $f = \{(1, 1), (2, 1), (3, 1)\}$
 - (c) $f = \{(1, 3), (3, 2), (2, 1)\}.$
- 4. Show that f : [-1, 1] \rightarrow R, given by f(x) = $\frac{x}{(x+2)}$ is one-one. Find the inverse of the function

 $f: [-1, 1] \rightarrow Range f.$

(Hint : For $y \in \text{Range f}$, $y = f(x) = \frac{x}{(x+2)}$, for some x in [-1, 1], i.e., $x = \frac{2y}{(1-y)}$)

- 5. Consider f : R₊ \rightarrow [-5, ∞) given by f(x) = 9x² + 6x 5. Show that f is invertible with f⁻¹(y) = $\left(\frac{(\sqrt{y+6})-1}{3}\right)$.
- 6. For each operation * defined below, determine whether * is binary, commutative or associative. On Z^+ , define a * b = 2^{ab} .
- 7. Let $A = N \times N$ and * be the binary operation on A defined by

$$(a, b) * (c, d) = (a + c, b + d)$$

8. Determine which of the following binary operations on the set R are associative and which are commutative :

$$a^*b = \frac{(a+b)}{2} \ \forall \ a, b \in R.$$