SWOT INSTITUTE

SEQUENCE AND SERIES

1. In an A.P., the first term is 2 and the sum of the first five terms is one-fourth of the next five terms. Show that $20^{\text {th }}$ term is -112 .
2. If $\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}$ is the A.M. between a and b, then find the value of n.
3. If the sum of n terms of an A.P. is $3 n^{2}+5 n$ and its mth term is 164 , find the value of m.
4. The sums of n terms of two arithmetic progressions are in the ratio $5 n+4: 9 n+6$. Find the ratio of their $18^{\text {th }}$ terms.
5. The difference between any two consecutive interior angles of a polygon is 5°. If the smallest angle is 120°, find the number of the sides of the polygon.
6. Find the sum of the sequence $7,77,777,7777, \ldots$ to n terms.
7. If the first and the nth terms of a G.P. are a and b, respectively, and if P is the product of n terms, prove that $P^{2}=(a b)^{n}$.
8. If A and G be A.M. and G.M., respectively between two positive numbers, prove that the numbers are $A \pm \sqrt{(A+G)(A-G)}$.
9. Find the value of n so that $\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}$ may be the geometric mean between a and b.
10. The sum of two numbers is 6 times their geometric means, show that numbers are in the ratio $(3+2 \sqrt{2}):(3-2 \sqrt{2})$
11. Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from $(n+1)^{\text {th }}$ to $(2 n)^{m}$ term is $\frac{1}{r^{n}}$.
12. Find the sum to n terms of the series : $5+11+19+29+41 \ldots$
13. Find the sum of n terms : $5^{2}+6^{2}+7^{2}+\ldots+20$.
14. Find the sum of n terms: $1^{2}+\left(1^{2}+2^{2}\right)+\left(1^{2}+2^{2}+3^{2}\right)+\ldots$.
15. The ratio of the A.M. and G.M. of two positive numbers a and b, is m : n. Show that $a: b=\left(m+\sqrt{\left.m^{2}-n^{2}\right)}\right):\left(\left(m-\sqrt{m^{2}-n^{2}}\right)\right.$.
