SWOT INSTITUTE
 DIFFERENTIAL EQUATIONS (CLASS - XII)

1 Mark Questions

1. Write the integrating factor of the following differential equation

$$
\left(1+y^{2}\right)+(2 x y-\cot y) \frac{d y}{d x}=0
$$

2. Find the solution of the differential equation $\frac{d y}{d x}=x^{3} e^{-2 y}$.

4 Marks Questions

3. Find the particular solution of the differential equation $\frac{d y}{d x}=1+x+y+x y$, given that $\mathrm{y}=0$ when $\mathrm{x}=1$.
4. Find the particular solution of the differential equation $x \frac{d y}{d x}-y+x \operatorname{cosec}\left(\frac{y}{x}\right)=0$ or $\frac{d y}{d x}-\frac{y}{x}+\operatorname{cosec}\left(\frac{y}{x}\right)=0$, given that $y=0$, when $x=1$.
5. Find the general solution of the differential equation $(x-y) \frac{d y}{d x}=x+2 y$.
6. Find the particular solution of the differential equation $\left\{x \sin ^{2}\left(\frac{y}{x}\right)-y\right\} d x+x d y=0$, given that $\mathrm{y}=\frac{\pi}{4}$, when $\mathrm{x}=1$.
7. Solve the following differential equation

$$
\left(x^{2}-1\right) \frac{d y}{d x}+2 x y=\frac{2}{x^{2}-1}
$$

8. Find the particular solution of the differential equation $x\left(1+y^{2}\right) d x-y\left(1+x^{2}\right) d y=$ 0 , given that $\mathrm{y}=1$, when $\mathrm{x}=0$.
9. Find the particular solution of the differential equation $\log \left(\frac{d y}{d x}\right)=3 x+4 y$ equation, given that $\mathrm{y}=0$, when $\mathrm{x}=0$.
10. Solve the differential equation

$$
\left(1+x^{2}\right) \frac{d y}{d x}+y=e^{\tan ^{-1} x}
$$

11. Solve the following differential equation

$$
x \cos \left(\frac{y}{x}\right) \frac{d y}{d x}=y \cos \left(\frac{y}{x}\right)+x ; x \neq 0
$$

12. Solve the differential equation
$x \frac{d y}{d x}+y=x \cdot \cos x+\sin x$, given $y\left(\frac{\pi}{2}\right)=1$.
13. $\frac{d y}{d x}+y \sec x=\tan x$.
14. $x\left(x^{2}-1\right) \frac{d y}{d x}=1, y=0$, when $x=2$.
15. Solve the following differential equation $\left(1+x^{2}\right) d y+2 x y d x=\cot x d x$, where $x \neq 0$.
16. Find the particular solution of the differential equation $\left(1+e^{2 x}\right) d y+\left(1+y^{2}\right) e^{x} d x=0$, given that $y=1$, when $x=0$.
17. Solve the following differential equation $\left(y+3 x^{2}\right) \frac{d x}{d y}=x$.
18. Solve the following differential equation

$$
x d y-\left(y+2 x^{2}\right) d x=0
$$

19. Solve the following differential equation $x d y+\left(y-x^{3}\right) d x=0$
20. Show that the following differential equation is homogenous and then solve it. $y d x+x \log \left|\frac{y}{x}\right| d y-2 x d y=0$.
21. Solve the following differential equation.

$$
\left(x \cos \frac{y}{x}+y \sin \frac{y}{x}\right) y-\left(y \sin \frac{y}{x}-x \cos \frac{y}{x}\right), \frac{d y}{d x}=0
$$

22. Solve the following differential equation

$$
\left(x^{2}+1\right) \frac{d y}{d x}+2 x y=\sqrt{x^{2}+4}
$$

23. Solve the following differential equation

$$
\left(x^{3}+x^{2}+x+1\right) \frac{d y}{d x}=2 x^{2}+x
$$

24. Solve the following differential equation, $\cos ^{2} x \frac{d y}{d x}+y=\tan x$.
25. Solve the following differential equation $\sec x \frac{d y}{d x}-y=\sin x$.
26. Solve the following differential equation $x \frac{d y}{d x}=y-x \tan \left(\frac{y}{x}\right)$

6 Marks Questions

27. Solve the following differential equation

$$
\sqrt{1+x^{2}+y^{2}+x^{2} y^{2}}+x y \frac{d y}{d x}=0 .
$$

28. Show that the differential equation
$\frac{d y}{d x}=\frac{y^{2}}{x y-x^{2}}$ is homogenous and also solve it.
29. Find the particular solution of the differential equation $\left(\tan ^{-1} y-x\right) d y=\left(1+y^{2}\right) d x$, given that $x=1$ when $y=0$.
30. Show that the differential equation $\left[x \sin ^{2}\left(\frac{y}{x}\right)-y\right] d x+x d y=0$ is homogenous. Find the particular solution of this differential equation, given that $\mathrm{y}=\frac{\pi}{4}$, when $\mathrm{x}=1$.
31. Find the particular solution of the differential equation $\frac{d x}{d y}+x \cot y=2 y+y^{2} \cot y$, $y \neq 0$), given that $x=0$, when $y=\frac{\pi}{2}$.
32. Find the particular solution of the differential equation $\left(\tan ^{-1} y-x\right) d y=\left(1+y^{2}\right) d x$, given that $\mathrm{x}=0$, when $\mathrm{y}=0$.
